
University
of Coimbra

A neuroscience and AI approach to software bugs:
expectations and some tangible results

Henrique Madeira
Department of Informatics Engineering

Faculty of Science and Technology
University of Coimbra - Portugal

76th Meeting of the IFIP 10.4 Working Group on
Dependable Computing and Fault Tolerance
Hood River - 27 June 2019 — 1 July 2019

2Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Software faults (bugs)
Specification

Design

< - - - >

Code

I’m a bohrbug!

I’m a mandelbug!

I’m an age
related bug!Bugs are a very, very, very

difficult problem…

3Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Software faults: a persistent problem

• Software reliability is mainly based on fault avoidance using good
software engineering methodologies

• In real systems (i.e., not toys) à fault avoidance not successfulà Fault-
tolerance is needed, unless the impact of failures is acceptable.

• Rule of thumb for fault density in software (Rome labs, USA)
◆ 10-50 faults per 1,000 lines of codeà for good software
◆ 1-5 faults per 1,000 lines of code à for critical applications using highly mature

software development methods and having intensive testing

4Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Software faults: a persistent problem

• Software reliability is mainly based on fault avoidance using good
software engineering methodologies

• In real systems (i.e., not toys) à fault avoidance not successfulà Fault-
tolerance is needed, unless the impact of failures is acceptable.

• Rule of thumb for fault density in software (Rome labs, USA)
◆ 10-50 faults per 1,000 lines of codeà for good software
◆ 1-5 faults per 1,000 lines of code à for critical applications using highly mature

software development methods and having intensive testing

• SW development methodologies

• Static analysis tools

• Software inspections

• Model checking

• Testing, testing, testing

• Verification and validation

• …

5Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Software faults: a persistent problem

• Software reliability is mainly based on fault avoidance using good
software engineering methodologies

• In real systems (i.e., not toys) à fault avoidance not successfulà Fault-
tolerance is needed, unless the impact of failures is acceptable.

• Rule of thumb for fault density in software (Rome labs, USA)
◆ 10-50 faults per 1,000 lines of codeà for good software
◆ 1-5 faults per 1,000 lines of code à for critical applications using highly mature

software development methods and having intensive testing

• SW development methodologies

• Static analysis tools

• Software inspections

• Model checking

• Testing, testing, testing

• Verification and validation

• …

6Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Size matters: examples

From Rich Rogers, https://twitter.com/richrogersiot/status/958112741218111489

Half million of software bugs?
(using conservative bug density statistics)

7Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Linux kernel size: another example

696212 patches since
April 16, 2006

8Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Three communities: three attitudes towards bugs

Code
Software Reliability

Software Engineering

The process is the solution

Models and tools are the solution

Architecture is the solution

Dependability

Reality…

9Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Three communities: three attitudes towards bugs

Code
Software Reliability

Software Engineering

The process is the solution

Models and tools are the solution

Architecture is the solution

Dependability

Reality…What is missing?...
àto study the root causes of bugs as result

of human errors in highly abstract and
complex tasks, such as code development
and code inspection

10Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

A neuroscience and AI approach to software bugs:
expectations and some tangible results

Outline

• Introduction

• Neuroscience perspective on software code
◆ Code comprehension
◆ What’s going on inside your brain when you (don’t) find a bug?

• Expectations and some tangible results
◆ Biofeedback Augmented Software Engineering
◆ Intelligent code biofeedback annotation using HRV and pupillography

• Conclusion

Results from
experiment

Results from
experiment

11Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Neuroscience perspective on software code

Code comprehension

12Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Neuroscience perspective on software code
Medical Imaging for Software Engineering

• fMRI – Functional Magnetic Resonance Imaging
• EEG – Electroencephalography
• fNIRS – Functional Near-Infrared Spectroscopy

13Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Neuroscience perspective on software code
Keynote at ICSE/ICPC, May 2019

14Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Neuroscience perspective on software code

• “Distilling Neural Representations of
Data Structure Manipulation using fMRI
and fNIRS”, Yu Huang, Xinyu Liu, Ryan
Krueger, Tyler Santander, Xiaosu Hu,
Kevin Leach and Westley Weimer,
International Conference on Software
Engineering (ICSE) 2019.

• “A Look into Programmers' Heads”,
Norman Peitek, Janet Siegmund, Sven
Apel, Christian Kästner, Chris Parnin, Anja
Bethmann, Thomas Leich, Gunter Saake,
André Brechmann , IEEE Transactions on
Software Engineering, August, 2018.

Less than 12 papers so far… but
the trend is growing fast.

All studies are exploratory; far
from being definitive.

https://web.eecs.umich.edu/~weimerw/p/weimer-icse2019-slides.pdf

15Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Some general conclusions from fMRI/fNIRS studies

• Code comprehension is linked to the activation of five brain regions, which are
related to working memory, attention, and language processing.

• Language processing seems to be essential for code comprehension (Dijkstra was
right…) but..

• Brain regions related to mathematic processing were also active (in another study,
suggesting that the code task is determinant for the language/math balance)

• fMRI (and possibly fNIRS) can be used to measure programming experience and
knowledge

• Neural relationship between mental spatial ability and abstract data structure
manipulation (but participants reported no subjective experience of similarity).

16Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Neuroscience perspective on software code

• “Distilling Neural Representations of
Data Structure Manipulation using fMRI
and fNIRS”, Yu Huang, Xinyu Liu, Ryan
Krueger, Tyler Santander, Xiaosu Hu,
Kevin Leach and Westley Weimer,
International Conference on Software
Engineering (ICSE) 2019.

• “A Look into Programmers' Heads”,
Norman Peitek, Janet Siegmund, Sven
Apel, Christian Kästner, Chris Parnin, Anja
Bethmann, Thomas Leich, Gunter Saake,
André Brechmann , IEEE Transactions on
Software Engineering, August, 2018.

Less than 12 papers so far… but
the trend is growing fast.

All studies are exploratory; far
from being definitive.

https://web.eecs.umich.edu/~weimerw/p/weimer-icse2019-slides.pdf

Directly focused on
software faults

Main question: What’s
going on inside your
brain when you (don’t)
find a bug?

17Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Neuroscience perspective on software code

What’s going on inside your brain
when you (don’t) find a bug?

Biomedical
Engineers NeuroscientistsSW reliability

people
Artificial

intelligence people

18Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Brain network underlying human
errors in SW development activities

19Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Experimenting using fMRI?
What should we look out for?

Added features
• Screen
• Eye tracking
• Joystick

3T Magnetom Trio Tim MRI scanner, 12-channel head coil (Siemens)
Anatomical images acquired using MPRAGE sequence with resolution of 1 mm3

Functional analysis done using BrainVoyager QX 2.8 (BrainInovation)

20Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Fault models for software faults
(results from field studies)

Fault types

SW
Faults

Fault types

SW
Faults There is a top N of most common software fault

types. This is because people tend to err in
similar ways and in similar circumstances.

22Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

People fail in similar ways and similar circumstance

Different environments, different cultures, different development processes,
different systems and applications, different programming languages, etc., etc…
à but apparently similar error patterns; people is the only common element

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Assignment Checking Interface Algorithm Function

ODC
distribution
(our f ield…

■ Open source code
■ IBM products

Field studies:
ODC classification of
software faults found
in deployed software

23Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Experimenting using fMRI?
What should we look out for?

There is in fact a small number of most frequent types of bugs and
error prone scenarios à This is our focus

Field study on
software faults

Cognitive psychology
perspective on software faults

24Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Functional Magnetic Resonance Imaging (fMRI)

• fMRI uses the magnetic properties of blood to analyze brain activity in specific areas.

• BOLD (Blood Oxygen Level-Dependent) imaging.

• Creates highly detailed 3D images of the brain in successive instants (sampling 2
seconds)

• Active areas of the brain are detected by filtering out the active voxels, when compared to
a base level activity (i.e. fMRI is a differential technique).

To find the brain areas that are active in searching for bugs we need to filter out the active brain
areas when the participant is just reading and understanding the code (and vision areas,
movement, etc.).

25Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Experiment protocol overview
• Group of volunteers (experienced and very experienced programmers) are asked to do a code

inspection inside a fMRI system (20 volunteers)

• Three simple programs in C: quick sort, shell sort and matrix multiplication. Consistent in size
with the amount of code addressed in typical Fagan’s inspections.

• The programs contain a small number of realistic bugs (using the Top N most frequent bugs
types), inserted beforehand (a total of 15 bugs) (some other programs are used to create the
baseline for contrast).

• The algorithm and pseudo code is explained to the volunteers before the experiment (as in
Fagan’s inspections; but the inspection itself is individual).

• Each volunteer analyzes the code inside the fMRI:
◆ Records the bugs he/she founds
◆ Corrections are allowed (i.e., clear a bug indication)
◆ The eye tracking is synchronized with the fMRI (same time scale)
◆ After the session inside the fMRI, the volunteer indicates the level of confidence he/she has on the

each bug identified

26Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Example of the screen
available for the volunteers

• The cursor is controlled by a joystick (with an “enter button”)

• Brain activity related to movements, vision, hearing, etc. is filtered
out by software.

minutes

END

27Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Code inspection results:
True positives and false positives

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TP (total)
FP (total)

Participants

No. Bugs
(total of 15 bugs)

True Positive (TP) – Bugs correctly identified (i.e., correspond to bugs inserted in the programs)
False Positive (FP) – Bugs incorrectly identified (i.e., do not correspond to bugs inserted)

28Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Code inspection results: precision and recall

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

� Total Precision
� � Total Recall

Precision = TP / (TP + FP) à Average Precision = 0.6959 Stdev = 0.174
Recall = TP / Total real bugs à Average Recall = 0.3433

Stdev = 0.132

29Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Where are we looking at?

• Activation of brain areas when the participant found a real bug (suspicion and
confirmation) and when indicated a false positive.

• Brain activity in code lines where a bug was injected and the participant did not
indicated suspicion or bug confirmation.

• Impact of the code complexity where bug is inserted.

• Impact of recursive code structures (there are two in the used programs).

Neuroscience perspective:
(Brain activity in highly abstract tasks was not much investigated)

• Are there specific brain areas responsible for bug detection?

• Is there a specific area (or network) responsible for the “eureka moment” of
finding a bug?

• Is the suspicion of bug different from bug confirmation?

• Is the sense of an uncertain feeling in the presence of a bug related to
specific brain areas?

• What happens in the brain when an expert looks at the lines of code where
a bug is and does not suspect nor detect the bug?

30Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Where are we looking at?

• Activation of brain areas when the participant found a real bug (suspicion and
confirmation) and when indicated a false positive.

• Brain activity in code lines where a bug was injected and the participant did not
indicated suspicion or bug confirmation.

• Impact of the code complexity where bug is inserted.

• Impact of recursive code structures (there are two in the used programs).

Software reliability perspective:
• Why do some people see a given bug while others don’t?

• Why is the precision in code inspections relatively low?

• What can we do to improve the chances of spotting more bugs during
program coding (and during testing)?

• Can we measure (estimate) participants skills using fMRI results?

• Can we measure cognitive load (amount of “mental effort”) when reading
and understanding a program snippet?

• Can we correlate “mental effort” with software complexity metrics?

31Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Sample of fRMI image: bug confirmation

The BOLD activated areas at the moment of bug confirmation.

32Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

fMRI results summary

Insula is a region critically involved in the processing of error uncertainty during
bug monitoring and programming decision.

33Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Code inspection results:
True positives and false positives

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TP (total)
FP (total)

Participants

No. Bugs
(total of 15 bugs)

True Positive (TP) – Bugs correctly identified (i.e., correspond to bugs inserted in the programs)
False Positive (FP) – Bugs incorrectly identified (i.e., do not correspond to bugs inserted)

34Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Some things we can see directly through fMRI

• The distinct role for the insula in bug monitoring and detection and a novel
connectivity pattern related to the quality of error detection (first step for dicovering
the brain activation patterns for the eureka moment of bug finding).

• “Mental effort” while reading/understanding the code, and consequently the
correlation between mental effort and software complexity metrics.

• Activation of specific brain regions (e.g., language, mathematical, decision taking, in
addition to the already known areas associated to code comprehension) and activation
patterns such as attention patterns. This can be combined with eye tracking to provide
fine grain analysis.

• Estimation/measurement of proficiency in the programming language

35Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Expectations and some tangible results

• Biofeedback Augmented Software Engineering

• Intelligent code biofeedback annotation using HRV and
pupillography

36Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Software faults are human faults

Biofeedback Augmented Software Engineering

37Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Biofeedback Augmented Software Engineering

Key step: biofeedback code annotation

• Annotate source code dynamically during code development
• Annotations reflect programmers’ cognitive load, stress level, etc.
• Annotations linked to lexical tokens; all lines of code are annotated.

38Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Biofeedback Augmented Software Engineering

Key step: biofeedback code annotation

• Annotate source code dynamically during code development
• Annotations reflect programmers’ cognitive load, stress level, etc.
• Annotations linked to lexical tokens; all lines of code are annotated.

Questions:
• Is it possible to capture programmer’s cognitive load?
• Can we do it using non intrusive means?
• Is it accurate enough to annotate code lines?

39Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

How can we gather programmer’s cognitive state?

Examples o wearable and low intrusive devices that can capture autonomic
nervous systems manifestations that could be related to cognitive load

40Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

How can we gather programmer’s cognitive state?

Examples o wearable and low intrusive devices that can capture autonomic
nervous systems manifestations that could be related to cognitive load

Problem:
These sources have noise and are sensitive to stress conditions totally
unrelated to the software development activities

In this experiment…
• We assess the possibility of using pupillography and HRV as indicators

of programmers’ mental effort and cognitive load.

• Pupillography is reasonably immune to noise and extraneous conditions.

• Pupillography is non intrusive.

• HRV is low intrusive.

41Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Biofeedback Augmented Software Engineering
What can we do if we have accurate code annotations reflecting programmer’s cognitive state?
(annotation represent cognitive load such as mental effort, stress, attention levels, fatigue, etc.)

• Biofeedback code highlighting to provide online warning of the programmer by
highlighting the lines of code that may have bugs and need a second look from the
programmer.

• Biofeedback-driven software testing to optimize testing effort by taking into
account the individual information gathered from each programmer that has participated
in the code development.

• Improved models of bug density estimation and SW risk analysis,
through the use of additional information on programmer’s emotional and cognitive states,
in conjunction to code complexity metrics and test coverage

• Programmers’ friendly integrated development environments with
automatic warning/enforcement of programmers’ resting moments, when accumulated
signs of fatigue and mental strain show that not only the code quality is doubtful but,
above all, programmers’ mental well-being must be protected.

• Biofeedback optimized training needs through the creation of individual
programmer’s profiles to help define training plans based on the biofeedback metadata.

• (there are more)

42Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Proposed experiment

• Goal: assess the possibility of using pupillography and HRV as indicators of
programmers’ mental effort and cognitive overload.

• Focused on program comprehension (such as in a code inspection)

• Answer the following question: is it possible to know if a programmer is reading complex
or simple code through the analysis of the pupillography signal? The same for HRV.

• A glimpse of very recent results showing that pupillography and HRV are accurate
enough to allow the annotation of specific code lines

43Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Experiment outline
Controlled experiment: programmers was asked to perform 4 tasks

Reading natural
language
(60 sec)

C1
Counts the number

of values in an
array that fall
within a given

interval.

C2
Multiplies two
numbers using

the classic
weighed digits

algorithm

C3
Search 3

dimensional
objects in a 3

dimension space

Program (Java) comprehension tasksControl task

• 30 volunteers (24 male, 6 female, age: 24.4 ± 6.18 yrs, 12 intermediate, 14
advanced, 4 expert in Java programming)

• Instrumented with eye tracking + pupillography + HRV (EDA)
• The task assigned to volunteers is to tries to understand each code.
• After reading each code, the volunteer answers a few questions to confirm if

he/she understood the program + a NASA TLX survey

Program Lines of
code

Nested
Block Depth

No.
params.

Cyclomatic
complexity

C1 13 2 3 3
C2 42 (12+30) 3 3 3 + 6
C3 49 5 4 15

44Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Experiment outline
Controlled experiment: programmers was asked to perform 4 tasks

Reading natural
language
(60 sec)

C1
Counts the number

of values in an
array that fall
within a given

interval.

C2
Multiplies two
numbers using

the classic
weighed digits

algorithm

C3
Search 3

dimensional
objects in a 3

dimension space

Program (Java) comprehension tasksControl task

• 30 volunteers (24 male, 6 female, age: 24.4 ± 6.18 yrs, 12 intermediate, 14
advanced, 4 expert in Java programming)

• Instrumented with eye tracking + pupillography + HRV (EDA)
• The task assigned to volunteers is to tries to understand each code.
• After reading each code, the volunteer answers a few questions to confirm if

he/she understood the program + a NASA TLX survey

Program Lines of
code

Nested
Block Depth

No.
params.

Cyclomatic
complexity

C1 13 2 3 3
C2 42 (12+30) 3 3 3 + 6
C3 49 5 4 15

Some features of the programs:

• The code style was “normalized” (variables with meaningful names, no
comments, etc.)

• The code has no complex math or difficult algorithms the participants may not
know à the complexity is related to the language constructs.

45Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Experiment outline
Controlled experiment: programmers was asked to perform 4 tasks

Reading natural
language
(60 sec)

C1
Counts the number

of values in an
array that fall
within a given

interval.

C2
Multiplies two
numbers using

the classic
weighed digits

algorithm

C3
Search 3

dimensional
objects in a 3

dimension space

Program comprehension tasksControl task

Goal: measure cognitive load while comprehending code.
Is it possible to identify the program a volunteer is looking at
through the analysis of the pupillography and HRV signals?

46Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Experiment protocol

Steps
1. Baselineà empty grey screen with a black cross in its center for 30 seconds.

2. Reference activity à text in natural language to be read by the participant (60 seconds
max.).

3. Baselineà empty grey screen with a black cross in its center for 30 seconds.

4. Code comprehension taskà screen displays the code of the program to be analyzed for
code comprehension. This step lasts up to 10 minutes maximum for each program.

5. Empty grey screen with a black cross for 30 seconds.

6. Repeat steps 4 and 5 program by program (C1, C2, C3)

7. Survey 1: NASA-TLX to assess the subjective mental effort perceived by each participant
in the code comprehension.

8. Survey 2: check understanding of the program.

47Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Goal: assess the possibility of using pupillography and HRV as indicators of programmers’ mental
effort and cognitive overload.

Since programs have different complexity, the pupillography signals should be different from program
to program

NASA-TLX results

Reading natural
language
(60 sec)

C1
Counts the number of
values in an array that

fall within a given
interval.

C2
Multiplies two

numbers using the
classic weighed
digits algorithm

C3
Search 3 dimensional

objects in a 3
dimension space

Program comprehension tasksControl task

0.96

0.29 0.3 0.27

0.43

0.78

0.65 0.68

0.48

0.81

0.66
0.61

0

0.2

0.4

0.6

0.8

1

Acuracy of prog.
comprehension

Mental effort Time pressure Discomfort

C1 C2 C3

Subjective code complexity measured using NASA TLX

• Participants consider the complexity of the 3
programs substantially different (especially for C1
when compared to C2 and C3)

• Code metrics do not map (always) to
programmers’ cognitive load. Metrics are not
enough to guide testing effort.

48Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Pupillography results

49Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Significance level results

Green squares represent
groups where the mean values
of the corresponding feature
are significantly different
(p<0.01)

R vs C P = 0.012

R vs C1 P > 0.05

R vs C2 P > 0.05

R vs C3 P > 0.05

C1 vs C2 P > 0.05 P = 0.017

C1 vs C3

C2 vs C3 P = 0.011 P = 0.012

0 Hz
to

0.04 Hz

0.04 Hz
to

0.15 Hz

0.15 Hz
to

0.4 Hz

0.4 Hz
to

1.6 Hz

1.6 Hz
to

5 Hz

5 Hz
to

10 Hz

Multiple comparison tests using
Kruskal-Wallis test

Encouraging results, but… to
allow code annotation we need
precision and accuracy in both
time and space

50Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

HRV results
0.96

0.29 0.3 0.27

0.43

0.78

0.65 0.68

0.48

0.81

0.66
0.61

0

0.2

0.4

0.6

0.8

1

Acuracy of prog.
comprehension

Mental effort Time pressure Discomfort

C1 C2 C3

Subjective code complexity measured using NASA TLX

Cognitive load measured using HRV

• HRV results and NASA TLX provide consistent
view of programmers’ cognitive load.

• Code metrics do not not map (always) to
programmers’ cognitive. Metrics are not enough
to guide testing effort.

51Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Accuracy of pupillography (time and space)
(just a glimpse of very recent results…)

Not clustered . Not critical. Critical

52Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Accuracy of pupillography (time and space)
(just a glimpse of very recent results…)

Not clustered . Not critical. Critical

53Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H
en

riq
ue

 M
ad

ei
ra

,
D

EI
-F

C
TU

C
, 2

01
9

Summary
• Biofeedback Augmented Software Engineering

◆ A new research approach with many, many, many research questions
◆ Key à accurate biofeedback code annotation at code line level representing
metadata on the cognitive state of the programmer

◆ Many potential utilizations

• Can we monitor cognitive load using available (and simple) biofeedback
technology such as pupillography and HRV (and eye tracking)?
◆ Apparently YES
◆ Not yet fully clear if the precision in time and domain space is good enough to
annotate code at code line and token level

◆ Pupillography is moderately susceptibility to noise (causes not related to code
development) that need to be evaluated

◆ Pupillography + HRV + eye tracking should be used in conjunction

