A neuroscience and Al approach tdsoftware bugs:
expectations and some tangible rée

Henrique Madeira
Department of Informatics Engineering
Faculty of Science and Technology
University of Coimbra - Portugal

76th Meeting of the IFIP 10.4 Working Group on
Dependable Computing and Fault Tolerance
Hood River - 27 June 2019 — 1 July 2019

of Coimbra



Software faults (bugs)

Specification
Design
/ {
< _.> Imabohrbug.}
Code
91 context "on the lessons index page" do
92 / f
03 let(:coursel) { Course.first } I m a mandelbug‘ ]
04 let(:1lessonl) { coursel.lessons.first }
95
96 before do
97 visit course_path(coursel.title_url) W
EE— 2N AN I'm an age
Bugs are a very, very, very  |at course do related bug!
difficult problem... :text = lesson.title)
104 end
105
106 it "should not include lessons for any other course" do ::ﬂ
107 not_included_lesson = Course.where("id != #{coursel.id}").first ..
. lessons.first
108 # puts not_included_lesson.inspect

Henriqt 7109 subject.should_not have_selector("h3", :text =>

Henrique Madeira, DEI-FCTUC, 2019



Software faults: a persistent problem

« Software reliability 1s mainly based on fault avoidance using good
software engineering methodologies

« In real systems (i.c., not toys) = fault avoidance not successful 2> Fault-
tolerance is needed, unless the impact of failures 1s acceptable.

« Rule of thumb for fault density in software (Rome labs, USA)
+ 10-50 faults per 1,000 lines of code = for good software

+ 1-5 faults per 1,000 lines of code > for critical applications using highly mature
software development methods and having intensive testing

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Henrique Madeira, DEI-FCTUC, 2019



Software faults: a persistent problem

« Software reliability 1s mainly based on fault avoidance using good

software eng@ng methodologies

« In real systems (i.e.,
tolerance is needed

e Rule of thumb for fal
+ 10-50 faults per 1,(

+ 1-5 faults per 1,00
software developmg

SW development methodologies
Static analysis tools

Software inspections

Model checking

Testing, testing, testing

Verification and validation

ssful 2 Fault-
e,

ng highly mature

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Henrique Madeira, DEI-FCTUC, 2019



e Software reliab
software enging

* In real systems
tolerance is nec development cycle.

e Rule of thumb f

Henrique Madeira

Software faults: a persistent problem

Costs rise exponentially the later
bugs are found within a project’s

+ 10-50 faults p¢
o 1-5 faults per
software devel ! '
l. F | ll ll

REQUIREMENTS DESIGN DEVELOPMENT TESTING SUPPORT

sing good

nl 2> Fault-

highly mature

. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Henrique Madeira, DEI-FCTUC, 2019



Size matters: examples

Software Size (million Lines of Code)

Moder High-end Car | ——

Facebook

Windows Vista

Large Hadron Collider
Boeing 787

Android

Google Chrome

Li K 126.0 illi
inux Kerne Half million of software bugs?

Mars Curiosity Rover

e S Talsicons (using conservative bug density statistics)

F-22 Raptor
Space Shuttle

0 10 20 30 40 50 60 70 80 90 100

From Rich Rogers, https:/ /twitter.com/richrogersiot/status/958112741218111489
Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Henrique Madeira, DEI-FCTUC, 2019



Linux kernel size: another example

Lines of code of the Linux Kernel Versions

20M

15M

10M

Lines of code

5M

0

696212 patches since
April 16, 2006

Lines of code per Kernel version

Click and drag in the plot area to zoom in

S -%?)%f)%é’ o vapxﬁbﬁb > 7’9%?’% 03’« %@%%-é b,‘))QQ'}O)Q?J% »”ﬁm?’% .“’qu-&b o 960('()'»?’%@17&{-\9@ 'D‘C"q
P AT Y Y N D N 0 BT 0T 8T 8T T b M T N o

Version

Lines of Code

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Henrique Madeira, DEI-FCTUC, 2019



Three communities: three attitudes towards bugs

Reality...

Code a
91 context "on the lessons index page" do *
92

93 let(:coursel) { Course.first } N

94 let(:lessonl) { coursel.lessons.first }

95

96 before do “ ? N

97 visit course_path(coursel.title_url) - -

98 end

99 -

100 it "should include every lesson for that course" do

101 coursel.lessons.each do |lesson|

102 subject.should have_selector("h3", :text => lesson.title) Y

103 end e

104 end ) 7y

105 <

106 it "should not include lessons for any other course" do li

107 not_included_lesson = Course.where("id != #{coursel.id}").first e
.lessons.first )

108 # puts not_included_lesson.inspect

109 subject.should_not have_selector("h3", :text =>

Al‘cb .
1 [‘ec,
ture ;¢ the
So Ill .
10

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Software Engineering

Verification

Maintenance

Software Reliability

Software Reliability Objective

Test Time T Sorwire Release

Dependability
4 N-Version Programming

Henrique Madeira, DEI-FCTUC, 2019



Three communities: three attitudes towards bugs

What is missing?...

—to study the root causes of bugs as result
of human errors in highly abstract and
complex tasks, such as code development
and code inspection

- I~

not include lessons for any other course"
107 not_included_lesson = Course.where("id != #{coursel.id}").first e
.lessons.first )
108 # puts not_included_lesson.in

- spect
109 subjec;.sboqld__pot haveTs_elgctor("hB", rtext =>

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Software Engineering

Dependability
4 N-Version Programming

Henrique Madeira, DEI-FCTUC, 2019



A neuroscience and Al approach to software bugs:

expectations and some tangible results

Outline
e Introduction

« Neuroscience perspective on software code
+ Code comprehension
+ What’s going on inside your brain when you (don’t) find a bug?

« Expectations and some tangible results
+ Biofeedback Augmented Software Engineering
«+ Intelligent code biofeedback annotation using HRV and pupillography

e Conclusion

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Results from
experiment

Results from
experiment

10

ra, DEI-FCTUC, 2019

Henrique Madei



Neuroscience perspective on software code

Code comprehension

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

11

Henrique Madeira, DEI-FCTUC, 2019



Neuroscience perspective on software code

Medical Imaging for Software Engineering

« fMRI - Functional Magnetic Resonance Imaging
* EEG - Electroencephalography
» {NIRS - Functional Near-Infrared Spectroscopy

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Henrique Madeira, DEI-FCTUC, 2019

12



Neuroscience perspective on software code

Keynote at ICSE/ICPC, May 2019

A ICSE 2019 (series) / 4 ICPC 2019 (series) / A\ Presentations /

What goes on in your brain when you read and understand code?

Track

When

Abstract

ICPC 2019 ICPC Presentations
Sat 25 May 2019 09:15 - 10:00 at Laurier - Keynote Chair(s): Federica Sarro

Within the last few years, high-resolution medical imaging technologies have grown in popularity for
research in software engineering in general and program comprehension in particular. New
approaches such function magnetic resonance imaging (fMRI) and functional near-infrared
spectroscopy (fNIRS) complement more established approaches such as eye tracking and
electroencephalograms (EEG), helping us to augment unreliable or subjective self-reporting with more
objective measures of the neurobiological correlates of software engineering. This keynote
summarizes recent exciting results using such techniques, from multiple authors, contrasting them to
more traditional studies. We highlight the “game changing” areas of program comprehension that can
be more rigorously targeted with these approaches (including expertise, efficiency, and problem
difficulty, among others). We also lay out a number of the challenges associated with such studies
(including experimental design, statistical analysis, regulatory compliance, reproducibility, and cost,
among others). We conclude with a call to arms, surveying compelling ideas and experiments from
psychology that have not yet been applied to program comprehension research.

Westley Weimer

University of Michigan

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

13

Henrique Madeira, DEI-FCTUC, 2019



Neuroscience perspective on software code

https:/ /web.eecs.umich.edu/~weimerw/p/weimer-icse2019-slides.pdf

Medical Imaging for Software
Engineering

eBrainimg '18
®ISSRE '16

Debugging
Readability ®|CPC '18

Code Review ®|CSE '17

o ESEM '18

e FSE '17

e SNPD '14 ° ]

¢ ICSE Companion '14 o« o.OTI‘IIS work
e ICSE '14

—
Data Structures

Comprehension

COLLEGE OF ENGINEERING

M COMPUTER SCIENCE & ENGINEERING

UNIVERSITY OF MICHIGAN

Less than 12 papers so far... but
the trend is growing fast.

All studies are exploratory; far
from being definitive.

“Distilling Neural Representations of
Data Structure Manipulation using fMRI
and fNIRS”, Yu Huang, Xinyu Liu, Ryan
Krueger, Tyler Santander, Xiaosu Hu,
Kevin Leach and Westley Weimer,
International Conference on Software
Engineering (ICSE) 2019.

“A Look into Programmers' Heads”,
Norman Peitek, Janet Siegmund, Sven
Apel, Christian Késtner, Chris Parnin, Anja
Bethmann, Thomas Leich, Gunter Saake,
André Brechmann , IEEE Transactions on
Software Engineering, August, 2018.

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

14

Henrique Madeira, DEI-FCTUC, 2019



Some general conclusions from fMRI/fNIRS studies

« Code comprehension is linked to the activation of five brain regions, which are
related to working memory, attention, and language processing.

« Language processing seems to be essential for code comprehension (Dijkstra was
right...) but..

« Brain regions related to mathematic processing were also active (in another study,
suggesting that the code task 1s determinant for the language/math balance)

« fMRI (and possibly fNIRS) can be used to measure programming experience and
knowledge

« Neural relationship between mental spatial ability and abstract data structure
manipulation (but participants reported no subjective experience of similarity).

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

15

Henrique Madeira, DEI-FCTUC, 2019



Neuroscience perspective on software code

https:/ /web.eecs.umich.edu/~weimerw/p/weimer-icse2019-slides.pdf

Medical Imaging for Software
Engineering

eBrainimg '18
®ISSRE '16

Debugging

Readability ®|CPC '18

Directly focused on
software faults

)\

Code Review ®ICSE 17
: . ,
oESEM '18 Ma}m question: What's
_ o ESE "17 going on inside your
Comprehension § o snpp 114 brain when you (don’t)
eICSE Companion '14 find a bug?
® ICSE '14

—
Data Structures

COLLEGE OF ENGINEERING

COMPUTER SCIENCE & ENGINEERING

UNIVERSITY OF MICHIGAN

Less than 12 papers so far... but
the trend is growing fast.

All studies are exploratory; far
from being definitive.

+ “Distilling Neural Representations of
Data Structure Manipulation using fMRI
and fNIRS”, Yu Huang, Xinyu Liu, Ryan
Krueger, Tyler Santander, Xiaosu Hu,
Kevin Leach and Westley Weimer,
International Conference on Software
Engineering (ICSE) 2019.

* “A Look into Programmers' Heads”,
Norman Peitek, Janet Siegmund, Sven
Apel, Christian Késtner, Chris Parnin, Anja
Bethmann, Thomas Leich, Gunter Saake,
André Brechmann , IEEE Transactions on
Software Engineering, August, 2018.

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

16

Henrique Madeira, DEI-FCTUC, 2019



Neuroscience perspective on software code

Ricardo Couceiro Gongalo Duarte Jodo Duries
CISUC, University of Coimbra CISUC, University of Coimbra CISUC, Polytechnic Institute of Coimbra
Coimbra, Portugal Coimbra, Portugal Coimbra, Portugal
Jodo Caktelhano Catarina Duarte César Teixeira
ICNAS, University of Coimbra ICNAS, University of Coimbra CISUC, University of Coimbra
Coimbra, Portugal Coimbra, Portugal Coimbra, Portugal
Miguel Castelo Branco Paulo de Carvalho Henrique Madeira
ICNAS/CIBIT, University of Coimbra CISUC, University of Coimbra CISUC, University of Coimbra
Coimbra, Portugal Coimbra, Portugal Coimbra, Portugal
SW reliability Artificial Biomedical C
. . . Neuroscientists
people intelligence people Engineers

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Henrique Madeira, DEI-FCTUC, 2019



Brain network underlying human
errors in SW development activities

@ Springer Link

Brain Imaging : _
and Behavior .. pp 1-15 | Cite as

o The role of the insula in intuitive expert bug detection in
=08

—osal computer code: an fMRI study

Brain Imaging and Behavior

£ Spetnger

Authors Authors and affiliations

Joao Castelhano, Isabel C. Duarte, Carlos Ferreira, Joao Duraes, Henrique Madeira, Miguel Castelo-Branco

Open Access = Original Research
First Online: 09 May 2018

6 1.3k

Shares Downloads

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

18

Henrique Madeira, DEI-FCTUC, 2019



Experimenting using fMRI?
What should we look out for?

[Added features

* Screen

+ Eye tracking

+ Joystick
\_

3T Magnetom Trio Tim MRI scanner, 12-channel head coil (Siemens)
Anatomical images acquired using MPRAGE sequence with resolution of 1 mm?
Functional analysis done using BrainVoyager QX 2.8 (BrainInovation)

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

19

Henrique Madeira, DEI-FCTUC, 2019



Fault models for software faults
(results from field studies)

# SW
Faults
' ' [ N N J
"
Fault types
ﬁasu‘ﬁfs There is a top N of most common software fault
types. This is because people tend to err in

similar ways and in similar circumstances.

Fault types

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Henrique Madeira, DEI-FCTUC, 2019



People fail in similar ways and similar circumstance

50.00%
BN% M m Open source code Field studies:
W0% T m 1BM products ODC classification of
35.00% -

30.00% software faults found
25.000/0 in deployed software

20.00% -
15.00% -
10.00% -
5.00% -
0.00% -

Assignment  Checking Interface  Algorithm  Function

Different environments, different cultures, different development processes,
different systems and applications, different programming languages, etc., etc...

- but apparently similar error patterns; people is the only common element

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Henrique Madeira, DEI-FCTUC, 2019

22



Experimenting using fMRI?
What should we look out for?

There is in fact a small number of most frequent types of bugs and

error prone scenarios = This is our focus

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 11, NOVEMBER 2006

Emulation of Software Faults:
A Field Data Study and a Practical Approach

Joao A. Duraes, Member, IEEE, and Henrique S. Madeira, Member, IEEE

849

Field study on
software faults

Proceedings of the 18th ISSAT International Conference on Reliability and Quality in Design
July 26-28, 2012 - Boston, Massachusetts, U.S.A.

A Taxonomy System to Identify Human Error Causes for

a; DEI-FCTUC, 2019

Software Defects

A. Fuqun Huang, B. Bin Liu, and C. Bing Huang

School of Reliability& System Engineering

Cognitive psychology
perspective on software faults

TATCTIT

TITTCOC 1V

Beihang University
Beijing, China
Email: huangfuqun@gmail.com

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

H

23



Functional Magnetic Resonance Imaging (fMRI)

fMRI uses the magnetic properties of blood to analyze brain activity in specific areas.

[ w —'
B

« BOLD (Blood Oxygen Level-Dependent) imaging. J o 29 ﬁ ,

« Creates highly detailed 3D images of the brain in successive instants (sampling 2
seconds)

» Active areas of the brain are detected by filtering out the active voxels, when compared to
a base level activity (i.e. fMRI is a differential technique).

To find the brain areas that are active in searching for bugs we need to filter out the active brain

areas when the participant is just reading and understanding the code (and vision areas,
movement, etc.).

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

24

Henrique Madeira, DEI-FCTUC, 2019



Experiment protocol overview

Group of volunteers (experienced and very experienced programmers) are asked to do a code
inspection inside a fMRI system (20 volunteers)

Three simple programs in C: quick sort, shell sort and matrix multiplication. Consistent in size
with the amount of code addressed in typical Fagan’s inspections.

The programs contain a small number of realistic bugs (using the Top N most frequent bugs

types), inserted beforehand (a total of 15 bugs) (some other programs are used to create the
baseline for contrast).

The algorithm and pseudo code is explained to the volunteers before the experiment (as in
Fagan’s inspections; but the inspection itself is individual).

Each volunteer analyzes the code inside the fMRI: " =
+ Records the bugs he/she founds ; a9 8
+ Corrections are allowed (i.e., clear a bug indication) K =& g’

+ The eye tracking is synchronized with the fMRI (same time scale)

+ After the session inside the fMRI, the volunteer indicates the level of confidence he/she has on the
each bug identified

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

25

Henrique Madeira, DEI-FCTUC, 2019



Example of the screen
available for the volunteers

Quick Sort

e <stdio.h>

ellsort(int * data, i
int elem, prev, gap;
int tmp;
for (gap = 1; gap < num; gap = 3 * gap + 1);
hile (gap > @) {
gap = (gap - 1) / 3;
for (elem = @; elem < num; elem++) {
tmp = data[elem];
prev = elem;
vhile (data[prev] > tmp) {
data[prev] = data[prev - gapl;
prev = prev - gap;
if (prev < gap) break;
}

data[prev] = tmp;

15 minutes

 The cursor is controlled by a joystick (with an “enter button”)

 Brain activity related to movements, vision, hearing, etc. is filtered
out by software.

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

26

Henrique Madeira, DEI-FCTUC, 2019



Code inspection results:
True positives and false positives

No. Bugs
(total of 15 bugs)
9
8
. = TP (total)
6 - = FP (total)
5 4
4 |
3 4
2
1 -
0 -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Participants

True Positive (TP) - Bugs correctly identified (i.e., correspond to bugs inserted in the programs)
False Positive (FP) - Bugs incorrectly identified (i.e., do not correspond to bugs inserted)

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Henrique Madeira, DEI-FCTUC, 2019

27



Code inspection results: precision and recall

1.00 - m [ ] Total Precision

0.90 - m [ [ Total Recall
0.80
0.70 -
0.60 -
0.50 -
0.40 -
0.30 -
0.20 -
0.10 -
0.00 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Precision = TP / (TP + FP) —> Average Precision = 0.6959 Stdev = 0.174
Recall = TP / Total real bugs - Average Recall = 0.3433
Stdev = 0.132

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Henrique Madeira, DEI-FCTUC, 2019



Where are we looking at?

Neuroscience perspective:
(Brain activity in highly abstract tasks was not much investigated)

Are there specific brain areas responsible for bug detection?

Is there a specific area (or network) responsible for the “eureka moment” of
finding a bug?

Is the suspicion of bug different from bug confirmation?

Is the sense of an uncertain feeling in the presence of a bug related to
specific brain areas?

What happens in the brain when an expert looks at the lines of code where
a bug 1s and does not suspect nor detect the bug?

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

on and

did not

29

Henrique Madeira, DEI-FCTUC, 2019



Where are we looking at?

*| Software reliability perspective:
« Why do some people see a given bug while others don’t?

« Why i1s the precision in code inspections relatively low?

« What can we do to improve the chances of spotting more bugs during
program coding (and during testing)?

*| « Can we measure (estimate) participants skills using fMRI results?

« Can we measure cognitive load (amount of “mental effort”) when reading
and understanding a program snippet?

« Can we correlate “mental effort” with software complexity metrics?

n and

id not

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

30

Henrique Madeira, DEI-FCTUC, 2019



Sample of fRMI image: bug confirmation

5

0 w—
-_
-_
-_—
-
-
-
=

5

t(16)

01750

The BOLD activated areas at the moment of bug confirmation.

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

31

Henrique Madeira, DEI-FCTUC, 2019



fMRI results summary

Contrast Label Brodmann | Pea Pea | Pea No
area kX kY kz P Voxels
B L Medial Frontal Gyrus BA9 -12 44 22 0,000053 6316
ug
identification | L Cuneus BA18 3 | 94 | 4 | 0000167 939
Vs < L Insula > BA13 -39 14 10 0,001095 446
Baseline ;
L Superior Temporal Gyrus BA39 -54 -55 28 0,000955 1841
Suspicious R Inferior Temporal Gyrus BA19 45 -54 -2 0,000393 1769
'S R Insula BA13 45 8 -2 0,000188 1393
Bug R Inferior Occipital Gyrus BA19 36 -79 -5 0,000249 1664
R Middle Frontal Gyrus BAS8 51 8 40 0,000008 1208
Code with bugs
Vs R Precuneus BA19 30 -61 37 0,000001 721
Neutral (code | R Lingual Gyrus BA17 15 94 | -14 0,000001 510
rea:";i‘) M9 | LPrecuneus BA19 27 | 70 | 40 | o,000008 | 1791
u
L Inferior Occipital Gyrus BA18 -33 -85 -14 0,000008 570

Insula is a region critically involved in the processing of error uncertainty during

bug monitoring and programming decision.

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

32

Henrique Madeira, DEI-FCTUC, 2019



Code inspection results:
True positives and false positives

No. Bugs
(total of 15 bugs)
9
8
. ~ mTP(total)
6 - = FP (total)
5 4
4 |
3 4
2
1 -
0 -
18 19 20

Participants

True Positive (TP) - Bugs correctly identified (i.e., correspond to bugs inserted in the programs)
False Positive (FP) - Bugs incorrectly identified (i.e., do not correspond to bugs inserted)

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

33

Henrique Madeira, DEI-FCTUC, 2019



Some things we can see directly through fMRI

« The distinct role for the insula in bug monitoring and detection and a novel
connectivity pattern related to the quality of error detection (first step for dicovering
the brain activation patterns for the eureka moment of bug finding).

« “Mental effort” while reading/understanding the code, and consequently the
correlation between mental effort and software complexity metrics.

« Activation of specific brain regions (e.g., language, mathematical, decision taking, in
addition to the already known areas associated to code comprehension) and activation

patterns such as attention patterns. This can be combined with eye tracking to provide
fine grain analysis.

« Estimation/measurement of proficiency in the programming language

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

34

Henrique Madeira, DEI-FCTUC, 2019



Expectations and some tangible results

« Biofeedback Augmented Software Engineering

« Intelligent code biofeedback annotation using HRV and
pupillography

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

35

Henrique Madeira, DEI-FCTUC, 2019



Software faults are human faults

Biofeedback Augmented Software Engineering

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

36

Henrique Madeira, DEI-FCTUC, 2019



Biofeedback Augmented Software Engineering

Key step: biofeedback code annotation

—\

\\

~

™~

¢ AddMessage.java € Loginjava € Calcjava

|

package sd.jspsupport;
import ...

@vebServlet(urlPatterns = { "/login/AddMessage” })
public class AddMessage extends HttpServlet {
private static final long serialVersionUID = 1L;

public static List<String> messages = new ArrayList<>()
EEEEEEEEEEESR

al

public void doPost(HttpServletRequest request, HttpServ

if (request.getParameter( = "who") != null) {
String what = request.getParameter( = "what");
String who = request.getParameter( = "who");
messages.add(who + ": " + what);

} else {
System.out.println("failed to get Parameter”);

}

response.getOutputStream().flush();

A

Annotate source code dynamically during code development
Annotations reflect programmers’ cognitive load, stress level, etc.
Annotations linked to lexical tokens; all lines of code are annotated.

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Biofeedback annotation file
(..
¢.)
)
.
()

Line 14, Tk<123, ft1, 0>, Tk<123, ft2, 1>,

Line 15 Tk<134, ft1, 0>, Tk<134, ft2, 0>,

Line 16, Tk<138, ft1, 0>, Tk<138, ft2, 0>,
.ml% Tk<143, ft1, 0>, Tk<143, ft2, 0>,
Line 18, Tk<145, ft1, 0>, Tk<145, ft2, 0>,
Line 19, Tk<147, ft1, 0>, Tk<147, ft2, 1>,
Line 20, Tk<153, ft1, 0>, Tk<153, ft2, 1>,
Line 21, Tk<156, ft1, 3>, Tk<156, ft2, 3>,
Line 22, Tk<159, ft1, 4>, Tk<159, ft2, 3>,
Line 23, Tk<161, ft1, 4>, Tk<161, ft2, 4>,
Line 24, Tk<163, ft1, 0>, Tk<163, ft2, 1>,
Line 25, Tk<165, ft1,1>, Tk<165, ft2, 0>,
Line 26, Tk<168, ft1, 0>, Tk<168, ft2, 0>,
Line 27, Tk<170, ft1, 0>, Tk<17
Line 28, Tk<173, ft1, 0>, T
Line 29, Tk<174, ft1,




Biofeedback Augmented Software Engineering

Key step: biofeedback code annotation

= [ . —
— ~ _ Biofeedback annotation file
¢ AddMessage.java € Loginjava € Calcjava ey ()
" package sd.jspsupport; V g;
import ... (::) <\\\
Questions: o
O o . ¥4 LK) ? 2’[ 0>I,
Is it possible to capture programmer’s cognitive load? 2%
* Can we do it using non intrusive means? e
Is it accurate enough to annotate code lines? Y

System.out.println("failed to get Parameter”);

}
response.getOutputStream().flush();

A

Annotate source code dynamically during code development
« Annotations reflect programmers’ cognitive load, stress level, etc.
* Annotations linked to lexical tokens; all lines of code are annotated.

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

S——

Line 23, Tk<161, ft1, 4>, Tk<161, {t2, 4>,
Line 24, Tk<163, ft1, 0>, Tk<163, ft2, 1>,
Line 25, Tk<165, ft1,1>, Tk<165, ft2, 0>,
Line 26, Tk<168, ft1, 0>, Tk<168, ft2, 0>,
Line 27, Tk<170, ft1, 0>, Tk<17|
Line 28, Tk<173, ft1, 0>, T,
Line 29, Tk<174, ft1,




How can we gather programmer’s cognitive state?

Examples o wearable and low intrusive devices that can capture autonomic
nervous systems manifestations that could be related to cognitive load

. public cliss e
privm\smu Qgt'o(un "
l.,‘ i byl g

R AR ) |
B 4y e £ ,‘,'_‘”, il

; .s;gxﬁws;:

Strmgmurkr strmsul(lmukr new Strmud!r(resnlt length);

for (int i =“fesqldength - 1; i >= 8 i--h{"

" yte digit & sult[il; h

if [dgn ) llﬁlrmglesullmuder teigthQ > 8) {
su-ugﬁmlmmn wn((dur) (digit + 0"));

) . .

)
utvm strlnﬂ!mhﬁlﬂdﬁ (mrlq()‘
) S8 32

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

39

Henrique Madeira, DEI-FCTUC, 2019



How can we gather programmer’s cognitive state?

Problem:

These sources have noise and are sensitive to stress conditions totally
unrelated to the software development activities

In this experiment...

« We assess the possibility of using pupillography and HRV as indicators
of programmers’ mental effort and cognitive load.

» Pupillography is reasonably immune to noise and extraneous conditions.
* Pupillography is non intrusive.

e HRYV is low intrusive.

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

40

Henrique Madeira, DEI-FCTUC, 2019



Biofeedback Augmented Software Engineering

What can we do if we have accurate code annotations reflecting programmer’s cognitive state?
(annotation represent cognitive load such as mental effort, stress, attention levels, fatigue, etc.)

Biofeedback code hi%hlightin%\to provide online warning of the programmer by
highlighting the lines of code that may have bugs and need a second look from the
programmer.

Biofeedback-driven software testing to optimize testing effort by taking into
account the individual information gathered from each programmer that has participated
in the code development.

Improved models of bug density estimation and SW risk analysis,
through the use of additional information on programmer’s emotional and cognitive states,
in conjunction to code complexity metrics and test coverage

Programmers’ friendly integrated development environments with
automatic warning/enforcement of programmers’ resting moments, when accumulated
signs of fatigue and mental strain show that not only the code quality is doubtful but,
above all, programmers” mental well-being must be protected.

Biofeedback optimized training needs through the creation of individual
programmer’s protiles to help define training plans based on the biofeedback metadata.

(there are more)

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019 \_/



Proposed experiment

« Goal: assess the possibility of using pupillography and HRV as indicators of
programmers’ mental effort and cognitive overload.

« Focused on program comprehension (such as in a code inspection)

« Answer the following question: is it possible to know if a programmer is reading complex
or simple code through the analysis of the pupillography signal? The same for HRV.

« A glimpse of very recent results showing that pupillography and HRV are accurate
enough to allow the annotation of specific code lines

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

42

Henrique Madeira, DEI-FCTUC, 2019



Experiment outline

Controlled experiment: programmers was asked to perform 4 tasks

Control task

Reading natural
language
(60 sec)

Program (Java) comprehension tasks

C1

Counts the number
of values in an

C2
Multiplies two
numbers using

dimensional

C3
Search 3

array that fall the classic objectsina 3
within a given weighed digits dimension space
interval. algorithm
30 volunteers (24 male. 6 female. ace: 24 4 + 618 vrs. 12 intermediate, 14
Lines of Nested No. Cyclomatic
adva Lt code Block Depth | params. complexity
Instrd™ ¢ 13 2 3 3 A)
Thet{ c2 |421230) 3 3 3+6  pcode.
After| c3 49 5 4 15 pns to confirm if

he/she understood the program + a NASA TLX survey

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

43

Henrique Madeira, DEI-FCTUC, 2019



Experiment outline

Controlled experiment: programmers was asked to perform 4 tasks

Control task Program (Java) comprehension tasks

C1 2 C3

Some features of the programs:

* The code style was “normalized” (variables with meaningful names, no
comments, etc.)

* The code has no complex math or difficult algorithms the participants may not
know -> the complexity is related to the language constructs.

 Theti 2 |42012+30) 3 3 3+6  pcode.
o  After C3 49 5 4 15 bns to confirm if

he/she understood the program + a NASA TLX survey

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Henrique Madeira, DEI-FCTUC, 2019



Experiment outline

Controlled experiment: programmers was asked to perform 4 tasks

Control task Program comprehension tasks
C1 C2 C3
Reading natural Counts the number Multiplies two Search 3
language of values in an numbers using dimensional
(60 sec) array that fall the classic objects ina 3
within a given weighed digits dimension space
interval. algorithm

Goal: measure cognitive load while comprehending code.

Is it possible to identify the program a volunteer is looking at
through the analysis of the pupillography and HRV signals?

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

45

Henrique Madeira, DEI-FCTUC, 2019



Experiment protocol

2.

Steps

1.

Baseline - empty grey screen with a black cross in its center for 30 seconds.

Reference activity = text in natural language to be read by the participant (60 seconds
max.).

Baseline = empty grey screen with a black cross in its center for 30 seconds.

Code comprehension task = screen displays the code of the program to be analyzed for
code comprehension. This step lasts up to 10 minutes maximum for each program.

Empty grey screen with a black cross for 30 seconds.
Repeat steps 4 and 5 program by program (C1, C2, C3)

Survey 1: NASA-TLX to assess the subjective mental effort perceived by each participant
in the code comprehension.

Survey 2: check understanding of the program.

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

46

Henrique Madeira, DEI-FCTUC, 2019



Control task

Reading natural

language
(60 sec)

L

NASA-TLX results

Program comprehension tasks

C1
Counts the number of
values in an array that
fall within a given
interval.

\_/—

Subjective code complexity measured using NASA TLX

1 0.96
0.8
0.6 4
0.430'4
0.4
0.2
0
Acuracy of prog.
comprehension

Cl mC2

Yy
0.68 i
0.650.66 0.61 P
U3 I 027I
Time pressure Discomfort

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and

C2
Multiplies two
numbers using the
classic weighed

C3
Search 3 dimensional
objectsina 3
dimension space

ault roreraice, 1x

digits algorithm
Lines of Nested No. Cyclomatic
SECEEEn code Block Depth | params. complexity
C1 13 2 3 3
2 42 (12+30) 3 3 3+6
C3 49 3 4 15
* Participants consider the complexity of the 3

programs substantially different (especially for C1
when compared to C2 and C3)

Code metrics do not map (always) to
programmers’ cognitive load. Metrics are not
enough to guide testing effort.

UUU INIVEL = 47 JUll€ ZULly = 1 july zuiy

Henrique Madeira, DEI-FCTUC, 2019



Pupillograph y results

¥ A WA |

voe T

AR

u.“.u\.‘

b.- St

8

¢ R -

ey i

[Te) o 5} o 0 o
N [3Y] ~— -

nu

A |

e 3N

At SSESSNE

S . Sl

Lt Bl

A H

* -

[Te} o 0 (=} 0 o
N (aY] - —

N

AR |

* .vms ﬁ&a T

e e

g .».....um.%l H

MRS Bil

v, +oia i l-H

;

s Sl

25
20
5

-~

nuesry asd

o wn o

gopod
€ 1S9y
zopo)
z1sey

-0.04Hz

18P0 &
| 1seyd
apoo

Area

1sey

6102 ONLOA-TAA ‘BISPEIN bLIUSY]

wn o
[aV] N
£ T Tes *%ﬁ € 8po)
€ 1S9y
P H g epog N
2 1sey 6
tr? epod o J?
b g Lisey <
1504
wn o wn
(3] N -
e
o s M - € epo0
“#H ewsey
4 || 2 ep00 »
CaiH gwed @
- 1ep00 T
-~ H4 1sey m
: vt  miEEC:)
= R
[Te] o 7o) o 0 o
3V 31 — -
‘n'uedry qsd

48

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019



RvsC

Rvs C1

Rvs C2

Rvs C3

ClvsC2

Clvs C3

C2vs C3

Significance level results

Multiple comparison tests using
Kruskal-Wallis test

Green squares represent
groups where the mean values
of the corresponding feature
are significantly different
(p<0.01)

Encouraging results, but... to
allow code annotation we need
precision and accuracy in both
time and space

P=0.012
P> 0.05
P> 0.05
P> 0.05
P> 0.05 P=0.017
P=0.011 | P=0.012
0 Hz 0.04 Hz 0.15 Hz 0.4 Hz 1.6 Hz SHz
to to to to to to

0.04 Hz 0.15 Hz 0.4 Hz 1.6 Hz SHz 10 Hz

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Henrique Madeira, DEI-FCTUC, 2019



HRYV results

Subjective code complexity measured using NASA TLX

1 [—026 * HRV results and NASA TLX provide consistent
0 view of programmers’ cognitive load.
' 0.68
06 00506 0.61 * Code metrics do not not map (always) to
: 04048 programmers’ cognitive. Metrics are not enough
0.4 ' 03 — to guide testing effort.
0.2 Lines of Nested No. Cyclomatic
0 REREiEn Block Depth | params. complexity
Acuracy of prog. Time pressure Discomfort C1 2 3 3
comprehension
C2 42 (12+30) 3 3 3+6
Cl mC2 uC3 = : P e
Cognitive load measured using HRV
Control vs any code Clvs C2 Clvs C3 C2vs C3 >
Sensitivity 0.97 £ 0.06 \0.96 +0.14 0.96 = 0.20 0.46 = 0.38
Specificity 1+0 081 05— U85 2024 0.45 +0.42

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

Henrique Madeira, DEI-FCTUC, 2019

50



Accuracy of pupillography (time and space)

(just a glimpse of very recent results...)

Volunteer: 12 / Run: 1

100 1 i
200 | |
300t e | —
(2] ~ o8 < public :lass P
— ) 56 pub. ttati( mtgq du (n- seduence inY r, intt uwer)
S0 L T RS i
o S for 1o
c 500 R :
e i § .
B 600 v i R,
8_ ot 3 sys,teﬁ ou: ;rﬁ;m u;;l.ﬁ.- : uiﬂft);
> 700 f | ,
800
900
1000 \ !
0 50 100 [ . [ x \ 1 ; ,
5 [
Densi ! | LH 5
. i —LH] S
g 0\ 8
o , | 3
\ \
| | | . 2 5

2 — !

Not clustered .

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

1

Not critical.

Critical

Henrique Madeira, DEI-FCTUC, 2019

51



Accuracy of pupillography (time and space)
(just a glimpse of very recent results...)

Volunteer: 18 / Run: 2

@ [ |
(0]
X
2 W
- 1
i)
=2 d
[e]
o
> J
4 E aregpdnin orstast s
e static -gs;»nm[(q-wu (‘." )
Systenout' Frint In(yesfesult¥ 429", "56709°));
1 | "
T n 14 =
LH | 127
10
8 +
16 |
4 o
O 1 I 1 1 1 2 4
] I ‘ ‘ LH ‘ 'T ; L
> 50 - A 60 [ T +
E +
: I
0 1 | | 1 1 l 20 I % |

L i

200 300 400 500 600 700 Notclustered  Not critical Critical
_Time (5)

Henrique Madeira. 76th Me.. ..., <. oo oo o0 ool it iy —aomp e — —pmmemm A=

qical.  Critical

Henrique Madeira, DEI-FCTUC, 2019



Summary

- Biofeedback Augmented Software Engineering

+ A new research approach with many, many, many research questions

+ Key -> accurate biofeedback code annotation at code line level representing
metadata on the cognitive state of the programmer

+ Many potential utilizations

- Can we monitor cognitive load using available (and simple) biofeedback
technology such as pupillography and HRV (and eye tracking)?

+ Apparently YES

+ Not yet fully clear if the precision in time and domain space is good enough to
annotate code at code line and token level

+ Pupillography is moderately susceptibility to noise (causes not related to code
development) that need to be evaluated

+ Pupillography + HRV + eye tracking should be used in conjunction

Henrique Madeira. 76th Meeting of the IFIP 10.4 Working Group on Dependable Computing and Fault Tolerance, Hood River - 27 June 2019 — 1 July 2019

53

Henrique Madeira, DEI-FCTUC, 2019



